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Abstract.  A temperature gradient across a thick (≥ .1 mm) film selective
emitter will produce a significant reduction in the spectral emittance from the
no temperature gradient case.  Thick film selective emitters of rare earth
doped host materials such as yttrium-aluminum-garnet (YAG) are examples
where temperature gradient effects are important.  In this paper a model is
developed for the spectral emittance assuming a linear temperature gradient
across the film.  Results of the model indicate that temperature gradients will
result in reductions the order of 20% or more in the spectral emittance.

INTRODUCTION

Emission from thick films is not a surface phenomenon as is usually assumed
when discussing emissive materials.  It depends on the geometry of the material,
which for the film emitters means the film thickness.  Thus radiation leaving the
film originates at various depths within the film.

To model these film emitters we use a macroscopic approach.  That is we solve
the radiative transfer equation that applies for Boltzmann equilibrium of excited
state densities and includes stimulated emission and absorption, as well as,
spontaneous emission and scattering of radiation.  These atomic processes manifest
themselves on the macroscopic scale through the extinction coefficient, αλ.

The product of the extinction coefficient, αλ, and the film thickness, d, αλd =
Kd, which is usually called the optical depth, will determine the spectral emittance if
the temperature is a constant through the film.  However, for thick films (≥ .1 mm)
the temperature gradients are not negligible (> 100˚K) so the emittance model must
include a variable temperature through the film.  In the analysis to follow we
assume a linear temperature variation across the film.  This is the result that will
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occur if thermal conduction dominates radiative energy transfer.  In the case where
d ≤ 1 mm this is a good assumption for the rare-earth selective emitters we are
considering (3).

In the following section the emittance model will be developed.  Following that,
two approximate expressions for the spectral emittance, ελ, that apply when
scattering is neglected and the temperature gradient is small will be presented.  The
first approximation is applicable for large optical  depth, Kd, and the second
approximation  applies  for  small optical depth.  Both of these approximations are
compared to the exact result for ελ, neglecting scattering but for any temperature
gradient, obtained by a numerical solution of the governing equations.  Following
that a discussion of the optimum film thickness to obtain maximum emittance will
be presented.  Finally, spectral emittance results will be compared to experimental
results obtained for an erbium oxide (Er2O3) selective emitter that has an emission
band centered at a photon wavelength, λ = 1.5 µm.

THICK FILM EMITTANCE MODEL

The emittance model for the thick film emitter has been previously developed
for the case of no temperature gradient (1, 4).  This model can be extended to
include a temperature gradient across the film.  The model is based on the radiative
transfer equation (5), which is macroscopic in nature.  Thus the emissive,
absorptive and scattering properties of the material, which depend on the atomic
structure, are expressed through the extinction coefficient, αλ.  The key parameter
in determining the spectral emittance, ελ, is the optical depth, K = αλd.

Consider Figure 1 which is a schematic drawing of a thick film emitter.
Thermal energy enters through the  film substrate.  Part or all of the thermal input
leaves the film at x = d as radiation flux, Qλ(Kd).  To determine  ελ, Qλ(Kd) must be
calculated since ελ is defined as follows.

ε
λλ

λ≡
( )

( )
Q K

e T
d

bs , s

                                (1)

Where e Tbs sλ,( ) is the blackbody emissive power and Ts is the substrate
temperature.

e i
hc

hc kTbs bs
o

o s

= = ( ) −[ ]π π
λ λ

2

1

2

5 exp /
    (2)

Here h is Plank’s constant, k is Boltzmann’s constant, co is the vacuum speed of
light, and ibs, is the blackbody intensity.  Notice that ελ has been defined in terms of
the substrate temperatures, Ts.  The spectral emittance could be defined in terms of
the film surface temperature, Tf, or some combination of Tf and Ts.  However,
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defining ελ in terms of Ts means ελ  ≤ 1 in all cases since ebs (λ,Ts)≥ Ql(Kd).  This
definition agrees with the usual concept of emittance.

      Vacuum, nλο = 1
Qλ (Kd)

        Tf

    i K i Kd dλ λο λρ− += ( )( )

  i Kdλ
+ ( )                              iλ

+

    θ
      d

   x Film, nλf

  iλ
−

      Ts     i i n n i Ts s s f bs sλ λ λ λ λ λ λρ ε ρ λ+ −( ) = ( ) + −( )( ) ( )0 0 1
2

. / ,s

ε λλs bs si T,( )                                   Substrate, nλs

nλ = index of refraction
ρλο = reflectance at film-vacuum interface
ρλs  = reflectance at film-substrate interface
ελs = emittance of substrate
i Tbs sλ,( )= blackbody intensity for T = Ts

FIGURE 1.  Schematic Diagram of Thick Film Emittance Model

To calculate Qλ we require the radiative transfer equations for radiation intensity
moving in the + x direction, i Kλ θ+ ( ),cos , and intensity in the - x direction,
iλ

− (K,cosθ), (5).
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0 ≤ µ = cos θ ≤ 1
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- 1 ≤ µ = cos θ ≤ 0
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In using these equations we are assuming that y and z variation of intensity can be
neglected.  Appearing in equations (3) and (4) is the so-called source function,
S(K,µ), which in the case of isotopic scattering (S(K,µ) = S(K)) satisfies the
following equation (5).

S K n i T i
K

d i K
K K

df b d
d( ) = −( ) ( ) + ( ) −




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


 + −( ) −

−
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
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λ λλ µ

µ
µ µ

µ
µ2

0

1
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1

1
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0Ω
Ω

, , exp , exp

+ ( ) −( )∫Ωλ

2
0

1S K E K K dK
Kd

* * * (5)

Appearing in equation (5) is the scattering albedo.

Ωλ
λ

λ λ

λ

λ

σ
σ

σ
α

=
+

=
a

(6)

Where σλ is the scattering coefficient and aλ  is the absorption coefficient, which
have the dimensions, cm-1.  The sum of σλ and aλ  is the extinction coefficient, αλ.
Also appearing in equation (5) is the film index of refraction, nλf, and the
exponential integral, E1(x).

The general exponential integral, En(x), is defined as follows.

E x
x

v
dvn

n( ) ≡ −





−∫ν 2

0

1

exp (7)

Note that we are assuming isotropic scattering.  As a result, S is independent of µ =
cos θ.  Therefore, assuming diffuse boundary intensities, iλ

+ (0,µ) = iλ
+ (0) and

iλ
+ (Kd,µ) = iλ

+ (Kd) we see from equations (3) and (4) that iλ
+ and iλ

−  are also
independent of µ.

The diffuse (independent of µ ) boundary conditions at K = Kd and K = 0 are the
following.

i K i Kd dλ λο λρ− +( ) = ( )        at K = Kd (8a)

i i n n i Ts s s f bs sλ λ λ λ λ λ λρ ρ ε λ+ −( ) = ( ) + −( ) ( )0 0 1 2( ) ,s         at K = 0         (8b)

Equation (8a) states that the radiation leaving the film-vacuum interface in the -x
direction is equal to the reflected radiation at that interface.  For the film-substrate
interface equation (8b) states that iλ

+ (0) is the sum of the reflected radiation and the
radiation emitted by the substrate that is transmitted (1- ρλs) through that interface.
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The ( )n nfλ λs
2 term accounts for refraction at the interface (5, pg. 738).  The

reflectance at the film-vacuum interface is ρλο  and the reflectance at the film-
substrate interface is ρλs .  In the previous studies (1,3,4) the transmittance, (1-ρλs),
at the film-substrate interface was assumed to be 1 and the refraction term
( / )n nf sλ λ

2  was neglected.  We approximate ρλο  and ρλs  by the reflectance for

normal incidence, (5)

ρλο
λ

λ

=
−
+





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n

n
f

f

1

1

2

(9)
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λ λ

λ λ
s

s f

s f

n n

n n
=

−
+








2

          (10)

Where, nλs  is the substrate index of refraction.
At the film-substrate and film-vacuum interfaces there is the possibility of total

reflection occurring.  At an interface between a material with an index of refraction,
n,, and a material with index of refraction nm, where n, > nm, radiation moving
from , into m with an angle of incidence, θ>θ,m, where θ,m is given by Snell’s law
will be totally reflected.  This will be taken into account when calculating Qλ(Kd).
At the film-substrate interface refraction has been taken into account by including
the ( / )n nf sλ λ

2 term in equation (8b).  However, the possibility of total reflection is
not included.  Therefore, by using equation (8b) as the boundary condition we are
assuming that n nf sλ λ>  so that total reflection does not occur for radiation entering
the film from the substrate.

Now consider Qλ(Kd), which is the radiation flux leaving the film.  Since nλf>1
the radiation leaving the film will be refracted and some of the radiation that reaches
the film-vacuum interface will be totally reflected at the interface.  Therefore,

   Q Kd i Kd i Kd d
M

λ π θ θ θ θ θλ λ
θ

θ

   ,cos ,cos cos  sin  ( ) = ( ) − ( )[ ]+ −

=∫2
0

     (11a)

and using equation (8a) and letting µ = cosθ this becomes the following.

Q Kd o
i Kd d

M
λ π ρλ µ µ µλ

µ
( ) = −( ) ( )+∫    ,  2 1

1

          (11b)

Where µM is given by Snell’s Law.



NASA TM–107523 6

µ µ
λ

2 2 1
2

M M n
f

  cos   = = −
−

            (12)

Substituting (3) in (11b) yields the following.

Q Kd o
i h Mλ ρλ π λ( ) = −( ) + −[ ]+

+   ( ) _    1 2 0 Φ Φ             (13)

Where,
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M
dKM

Kd

  ( )    =
−







∫2 2

0
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                     (16)

Equation (13) gives Qλ(Kd) in terms of the source function S(K) and iλ
+ ( )0 .

The iλ
+ ( )0  intensity is obtained by using equations (3) and (4) to get two

simultaneous equations for i Kdλ
+ ( )  and iλ

− ( )0 .  These can then be solved for iλ
− ( )0

and the result used in equation (8b) to obtain iλ
+ ( )0  (4).
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Where,

D Ks d= − ( )1 4 0 3
2ρ ρλ λ Ε             (18)

Φ Ε_  = ( ) ( )∫2
0

3π S K K dK
Kd

            (19)

Now substitute equation (17) in (13).
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Where,

h K
K

s M d
d

M
+ = − ( ) 



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1 4 0
2

3 3ρ ρ µ
µλ λ Ε Ε             (21)

Equation (20) can  be substituted in equation (1) to obtain the spectral emittance,
ελ, in terms of the source function, S(K).  In the general case where scattering
exists the source function must be obtained by solving equation (5).  In the case of
no scattering, Ωλ = 0, and equation (5) reduces  to the following.

S K n i Tf b( ) = ( )λ λ2 ,           (22)

If we also assume T is a constant through the film, T = Ts, then the integrations
in Φ+, Φ-, and ΦM, can be carried out to yield the following.

ε
ρ ε ρ
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λ λ λ λ

λ
λo

f s

s
s d d
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K h K=
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

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+ − ( )[ ]− +

2
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2 3 3

1
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
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
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









µ

µM
d

M

D
K2

31 2Ε

constant temperature, no scattering            (23)

Thus ελ is determined by the optical depth, Kd, the indices of refraction, nλf and
nλs  and the substrate emittance, ελs.   In the case when scattering is important ελ  will
also be a function of the scattering albedo, Ωλ .

Now consider the case where a temperature gradient exists.  To demonstrate the
temperature gradient effects in the simplest manner we consider the no scattering
case since in that case the source function has the simple solution given by equation
(22).  We also assume a linear temperature gradient across the film.  As discussed
in the introduction this is a good approximation for the rare earth selective emitters.
As a result, the temperature across the film is given by the following expression.

T

T
T

x

d
T

K

Ks d

= − 



 = −







1 1∆ ∆  (24)

Where, the temperature gradient is defined as follows.
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∆T
T T

T

s f

s

≡
−

(25)

Using equations (24), (22) and (2) in the expressions for Φ+, Φ -, and Φ M, yields
the following.
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Where,

u
hc

kT
= 0

λ s

(29)

υ = K

Kd

(30)

Equations (26) - (28) can be used in equations (20) and (1) to obtain ελ.

ε
ρ ε ρ

ρλ
λ λ λ λ

λ
λ=

−( ) −( )
+ ′













+ ′ − ′











− − + +

2 1 1
2

2

2

n

D n
h h Df o

s
s M

s s Φ Φ Φ (31)

no scattering, with temperature gradient

As equations (26) - (28) indicate ′+Φ , ′−Φ ,and ′ΦM ,are functions of ∆Τ.  The
integrations in equations (26) - (28) must be carried out numerically.  However,
for small ∆T approximations to the integrals can be made. In most cases of
interest for selective emitters, λ µ≤ ≤( )7 2000m T Ks, , the dimensionless photon
energy, u, is greater than 1.  Therefore, the following approximations can be
made.
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exp exp
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e eu u− ≈1 eu >> 1 (32b)

In addition for ∆T << 1 and 0 ≤ υ ≤ 1;
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−

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
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≈ − − ∆u

T
e eu u T

1 υ
υ

∆
eu >> 1, ∆T << 1  (33)

With the approximations given by equations (32) and (33) equations (26) - (28)
become the following after a change in the integration variables.
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



( )∫Φ ∆ Εe Ku T
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
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


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Mµ µµ
2

0
2exp (36)

For a selective emitter the optical depth, Kd, will be large (Kd>1) in the emission
band and small (Kd<<1) outside the emission band.  Therefore, consider the two

limiting cases; 
u T

Kd

∆ << 1 and 
K

u T
d

∆
<< 1.  For the case where 

u T

Kd

∆ << 1,

integration by parts using

Ε Ε
n
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d x

dx− ( ) = − ( )
1 (37)

results in the following to first order in 
u T
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∆
.
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1

2

1

3
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Since we are interested in showing the effect of temperature gradient on ελ we
define the following quantity.

∆ε ε ελ λ λ≡ −0 (41)

Where ελ0 is the emittance for no temperature gradient and is given by equation
(23).  By using ∆ελto demonstrate the temperature gradient effect the dependence
on substrate emittance, ελs , is removed.  Therefore, using equations (38) - (40) in
(31) and equation (23) for ελ0 results in the following.

∆ Ε
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∆
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e
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K
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K
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M dµ

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
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
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
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

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no scattering, ∆ ∆
T e

u T

K
u

d

<< >> <<1 1 1, ,    (42)

Notice that if u∆T<<1 then ∆ε as given by equation (42) will be a linear function

of ∆T.  However, if u∆T is not small then ∆ ∆ελ ~ 1 −( )−e u T  provided 
u T

Kd

∆ << 1.  

Also, note by looking at equation (31) that ∆ελ is independent of the substrate
emittance.

Now  consider  ∆ελ  for   the   case   where  Kd<<1.   In  that case Ε2(K)  can be
expanded in a power series and the integrations in equations (34) - (36)

performed.  To first order in 
K

u T
d

∆
 the results are the following.

′ = ′ ≈ −( )+ −
−Φ Φ

∆
∆1 e

K

u T
u T d (43)

K

u T
d

∆
<< 1
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′ ≈ −( )−Φ
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∆
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If equations (43) and (44) are used in (31) and equation (23) for ελ 0  then

∆ελ becomes the following when the approximation Ε 3
1

2K Kd d( ) ≈ −  is used.
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∆

T e
K

T
u d<< >> <<1 1 1, , .

µ
(45)

Again, if u T∆ << 1 then ∆ε λ will be approximately a linear function of ∆T  just

as in the case of 
u T

Kd

∆ << 1.   Also note that ∆ελ  is a linear function of Kd and

that ελs  has no effect on ∆ελ .

TEMPERATURE GRADIENT EFFECT ON SPECTRAL
EMITTANCE FOR NO SCATTERING

Comparison of Exact and Approximate Solutions for
Spectral Emittance

With the results developed in the previous section we can now illustrate the
effect of ∆T on ελ.  In Figure 2 ∆ελ is shown as a function of ∆T for large optical
depth Kd =( )2  at several values of u.  The exact result for ∆ελ is obtained using
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FIGURE 2.  Emittance change as a function of temperature gradient at large
optical depth,  Kd = 2, for several dimensionless photon energies, u=hc0 /λkTs with
nλ s=10 and nλ f = 1.9.

equation (31) for ελ and numerical integration to obtain ′ ′+ −Φ Φ, and ′Φ M .  Also,

the 
u T

Kd

∆ << 1 result for ∆ελ (equation (42)) is shown in Figure 2.

As Figure 2 indicates ∆ελ changes rapidly at small ∆T with the slope increasing
for increasing u.  Thus even for ∆T≤.1 there will be a significant reduction in the
spectral emittance for u≥5.  In most cases, for the emission bands of rare earth
selective emitters where Kd >1 the dimensionless photon energy, u>5.  Therefore,
even a small temperature gradient will result in a significant reduction in the
spectral emittance in the emittance band of the rare earth selective emitters.
Obviously, making the emitter as thin as possible will reduce ∆T.  However, the
optical depth will also be reduced, if the thickness, d, is reduced, resulting in
decreased ελ.  As a result, there will be an optimum thickness, d, to obtain
maximum ελ.  This will be discussed in the next section.  Note also that the
approximate solution (equation (42)) is in close agreement with the exact results
when ∆T<.1.

Results in Figure 2 are for large optical depth (Kd = 2).  However, similar
results occur for small optical depth and are illustrated in Figure 3 where Kd =.1.
Again there is good agreement between the approximate solution (equation (45))
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FIGURE 3.  Emittance change as a function of temperature gradient at an optical
depth,  Kd=.1, for several dimensionless photon energies, u=hc0 /λkTs with nλ f=1.9
and nλ s=10.

and the exact solution when ∆T<.1.  The range of values for ∆ελ is much smaller
for the case where Kd <<1 than for Kd >1.  Thus the temperature gradient has only a
small effect on ελ when Kd <<1.  Therefore, for a selective emitter the emittance
outside the emission band will not be greatly effected by ∆T.

Optimum Thickness for Maximum Spectral Emittance

As already stated, the counteracting effects of increasing spectral emittance with
optical depth and decreasing spectral emittance with increasing temperature
gradient will result in an optimum film thickness for maximum spectral
emittance.   This can be demonstrated as follows.  Neglecting any conductive or
convective heat transfer at the film surface (which will occur if a vacuum exists at
the film surface) then the total power/area leaving the film is the following.

Q Q K dout d= ( )
∞

∫ λ λ
0

(46)

This same power/area must be supplied by thermal conduction and radiation at
the film-substrate interface to maintain a steady state.  Therefore, at  x = 0,
assuming conduction is much greater than radiation,

Q
dT

dxout f
x

= −
=

β
0

(47)

Where  βf  is  the  film  thermal  conductivity.   As  stated  earlier,  energy
transfer through the film is dominated by thermal conduction so that, equation

(24) applies and − =
−



=

dT

dx

T T

dx

s f

0
.  Therefore, from equations (46) and (47)

the following is obtained.

∆T
T T

T

Q

T
ds f

s

out

f s

=
−

=
β

(48)

To calculate  Qout , equation (31) for ελ, which is a function of ∆T must be used to

determine Q Kdλ ( ) (equation (1)).  However, since ελ is a function of ∆T,

equations (46) and (48) must be solved simultaneously  in order to obtain ∆T as a
function of Qout .  This has been done in ref. 3.  But to illustrate how an optimum
thickness occurs we can write Qout  as follows.



NASA TM–107523 14

Q Tout T sb s= ε σ 4 (49)

Where εT is the total emittance of the film and will be a function of Ts and σsb is
the Stefan-Boltzmann constant (5.67 x 10-12 w/ cm2 K4).  By using equation (49)
in equation (48) the following results.

∆T df= τ (50)

Where,

τ ε σ
βf

T sb s

f

T
cm= −

3
1   (51)

The quantity τ f d  is the ratio of radiation to thermal conduction (3).  Thus
equation (50) shows that ∆T will be small as long as thermal conduction
dominates.

For selective emitters of interest, ε βT f< >. , .2 02 w/cmK and Ts< 2000K, so

that 0 5 1< < −τ f mm .  If equation (50) is used for ∆T in equation (31) and since
K dd = α λ  the results for ελ when α λ = 100 cm-1 shown in figure 4 are obtained.
An extinction  coefficient α λ = 100 cm-1 is representative of the emission band of

a selective emitter.  The first thing to note from figure 4 is that for ∆T f> >( )0 0τ
there is an optimum thickness for maximum ελ.  For the case of no temperature
gradient τ f =( )0 there is no optimum d.  The larger the temperature gradient the

more pronounced the optimum d becomes.  For small τ f large values of ελ  occur
over a broad range of thicknesses.  Note that the curve for τ f = 2 mm-1 and τ f =
5 mm-1 have been truncated at d = .5 mm and d = .2 mm since ∆T df= ≤τ 1.

Also notice that the optimum d becomes smaller as τ f increases (larger ∆T).
Based on the results of figure 4 it appears that the optimum selective emitter
thickness to obtain maximum emittance in the emission band for α λ = 100 cm-1

is in the range .15≤ d ≤ .4 mm.  For α λ = 100 cm-1 this corresponds to an optical
depth range, 1.5≤Kd≤4.
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FIGURE 4.  Effect of temperature gradient on spectral emittance for large extinction
coefficient,  αλ =100 cm-1 , at several values of the temperature gradient parameter,
τf .  Also, u=5., ελ s=.1, nλ f=1.9, nλ s=10.

Now consider the case of small extinction coefficient, which is representative of
the wavelength region outside the emission band of a selective emitter.  Spectral
emittance results for α λ = 1 cm-1 are shown in figure 5.  In this case, ελ  does not
attain a maximum value even for thicknesses over 1 mm. Becauseα λ is small
much larger thicknesses (1 cm to obtain Kd=1) are required before ελ  will
approach its maximum value.  For d<.4 mm, the region where maximum ελ
occurs for largeα λ , the spectral emittance is nearly independent of τf.  
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FIGURE 5.  Effect of temperature gradient on spectral emittance for small
extinction coefficient,  αλ  =1 cm-1 , at several values of the temperature gradient
parameter, τ f .  Also, u=5., ελ s=.1, nλ f=1.9, nλ s=10.

Based on the results displayed in figures 4 and 5 several conclusions can be
made about the efficiency of a thick film selective emitter.  The emitter efficiency
(1,3,4) depends on the ratio of the emittance within the emission band εb to the
emittance outside the emission band, ε,.  Obviously it is desirable for εb/ε, to be
as large as possible.  For the emission band, whereα λ is large, there will be an
optimum thickness, dopt, (corresponding to 1.5≤Kd≤4.) to maximize εb.  Outside
the emission band, whereα λ is small, the spectral emittance increases at a much
slower rate with d than for the emission band for d < dopt.  For d<.4mm figure 5
shows that ελ increases nearly at the same linear rate regardless of the temperature
gradient.  Thus it appears that maximum emitter efficiency will occur for the
thickness, dopt, corresponding to maximum emittance within the emission band.
As stated earlier this thickness corresponds to 1.5≤Kd≤4.0 whenα λ = 100 cm-1.



NASA TM–107523 17

6a.  Extinction Coefficient

6b.  Index of refraction, nλ f

FIGURE 6.  Extinction coefficient and index of refraction for Er2O3-Al2O3 selective
emitter
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FIGURE 7.  Comparison of theoretical and experimental spectral emittance for
Er2O3-Al2O3 thick film selective emitter. Film thickness, d = .36 mm, nλ  s= 1., ελ s = .2,
Ts=1500K.

Comparison of Experimental and Theoretical Spectral
Emittance

To complete this study we compare the measured spectral emittance of a
selective emitter made of erbia (Er2O3) reinforced with alumina (Al2O3) with the
spectral emittance calculated using equation (31).  This emitter was fabricated at
the Auburn Space Power Institute (6).  The calculated ελ  is based on the
extinction coefficient,α λ , and index of refraction, nλf, shown in figure 6.  These
quantities were obtained using measured transmittance and reflectance data (6).

Figure 7 shows the experimental and theoretical ελ for an emitter of thickness, d
= .36 mm.  This emitter had a platinum foil substrate.  A constant substrate
emittance ελs = .2 was used for the platinum foil.  However, since there is an air
gap between the foil and the film the appropriate index of refraction for the film-
substrate interface is nλs = 1.0, which was used in the calculation.  The measured
temperature gradient was ∆T = .13 and the platinum foil substrate temperature
was Ts = 1500K.

The first thing to notice is the considerable reduction in ελ within the emission
bands centered at λ ≈ 1000 nm and λ ≈ 1500 nm as a result of the temperature
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gradient.  In the main emission band at λ ≈ 1500 nm the theoretical maximum
goes from ελ ≈ .8 when ∆T = 0 to ελ ≈ .35 when ∆T = .13.  As discussed earlier
(fig. 3), the spectral emittance outside the emission bands is not greatly affected
by ∆T.  

The measured emission band is broader than the theoretical emission band.
This occurs because the theoretical result is based on the extinction coefficient that
was measured at room temperature.  At high temperature broadening of the
emission band will occur which will therefore not be accounted for in the
theoretical results.  Part of the difference between the theoretical and experimental
ελ  for radiation outside the emission band is caused by experimental error.
Outside the emission band where ελ is small, background radiation coming from
sources other than the emitting film result in the measured ελ being larger than the
actual value, (2).

CONCLUSION

The no scattering theoretical spectral emittance model shows the importance of
even small ∆T ≈( ).1  temperature gradients on ελ.  For both small (Kd<<1) and
large  (Kd>>1) optical depths, approximations for ελ  were developed that give
good agreement with the exact results as long as  ∆T ≤ .1.

Because of the opposite dependence of ελ  on temperature gradient and optical
depth there will an optimum film thickness for maximum, ελ.  The model
predicts that the optimum optical depth has the range, 1.5≤Kd≤4.0, depending on
the temperature gradient.

Finally, there is good agreement between the theoretical spectral emittance and
experimental spectral emittance for a Er2O3-Al2O3 selective emitter fabricated at
the Auburn Space Power Institute.
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A temperature gradient across a thick (≥ .1 mm) film selective emitter will produce a significant reduction in the spectral
emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as
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